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) Low-Energy Predictions in Supersymmetric Grand Unified Theories. 
By Luis E. Ibanez, Graham G. Ross.
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2) SU(2)-L x U(1) Symmetry Breaking as a Radiative Effect of Supersymmetry Breaking in Guts. 
By Luis E. Ibanez, Graham G. Ross.
Phys.Lett. B110 (1982) 215-220.

Supersymmetry in 1981....

• In those days there was nobody working on Supersymmetry in 
Oxford (and almost anywhere)

• Graham and I started to work in SUSY in spring 1981. The 
literature available was scarce and obscure (Fayet-Ferrara Physics 
Report...).
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• Our first work in the subject was the computation of gauge coupling 
unification in the (now called) MSSM

2.6 Low energy supersymmetry and the MSSM 51

2.6.2 The MSSM fields and unification

One can easily construct SUSY versions of the grand unified theories of section 1.2,
dubbed SUSY-GUTs. For instance, the multiplet structure for SU(5) SUSY-GUTs
is shown in table 2.2. The models require additional Higgs scalars Φ24 in the adjoint

Vector Multiplets Chiral Multiplets

S=1 S=1/2 S=1/2 S=0

A
µ
SU(5) λ̃SU(5) ( 5+ 10) ( 5̃+ 1̃0)

H̃5, H̃5 H5, H5

Table 2.2 Field content of SU(5) SUSY-GUTs.

24 (and their fermion partners Φ̃24) in order to break SU(5) down to the SM. The
usual Higgs doublets are contained in chiral multiplets H5, H5 in the 5, 5 of SU(5).

Figure 2.1 Qualitative picture of gauge coupling unification in SU(5) Grand Unification,
for the non-SUSY (dashed line) and SUSY case (continuous line).

The SUSY models retain many qualitative properties of their non-SUSY counter-
parts, but with relevant quantitative differences. For instance, gauge coupling unifi-
cation improves as depicted in figure 2.1. Numerically, it differs from the non-SUSY
case in the extra SUSY particle contributions to the running of gauge couplings.
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LOW-ENERGY PREDICTIONS 1N SUPERSYMMETRIC GRAND UNIFIED THEORIES 

L.E. IBANEZ and G.G. ROSS 

Department of Theoretical Physics, Oxford, 0)(1 3NP, England 

Received 27 July 1981 

Globally supersymmetric theories provide a solution to the gauge hierarchy problem without the need for a strongly 
interacting sector. We consider various such theories which generalise the standard SU(3) X SU(2) ! U(1) model and com- 
pute their predictions for the unification scale M x, sin20W and fermion mass ratios. 

Grand Unified Theories (GUTs) have many attrac- 

tive features which suggest they may be relevant to 

the real world [1 ]. They unify the strong, weak and 

electromagnetic interactions relating quarks and lep- 

tons and predicting their couplings in terms of  a single 

coupling constant gG and the unification scale M x [2]. 

This leads in SU(5) to the remarkably successful pre- 

diction of  sin 0W(80 ) = 0.206 + 0.01 and M x ; (6.6 

-+ 6) X 1014 GeV [3]. For this value o f M  x the proton 

lifetime is estimated to be tp = 8 X 1030 yr [4]. 

However, there is a serious problem in the scalar 

sector of  GUTs. Since scalar mass terms are not for- 

bidden by a symmetry there is no reason why the 

Higgs H, which break the SU(3) X SU(2) ! U(1), at a 

scale Mw, to SU(3) X U(1)E M, should not have mass- 

es and vacuum expectation values of  the same order 

as the Higgs q~, which generate the breaking, at a scale 

Mx, of  SU(5) to SU(3) X SU(2) X U(1). It might be 

that a higher symmetry,  exact at a scale above Mx, 

might keep the H Higgs light. However, radiative cor- 

rections will spoil this relation and lead again to a 

heavy H sector. This is the hierarchy problem [5,6]. 

Three solutions to this problem have been suggested. 

One is to have a strongly interacting scalar sector (the 

hierarchy problem rests on a perturbative analysis); a 

second solution is to have no elementary H scalars at 

all, their role being taken by a composite scalar as in 

technicolour theories. The third possibility is that the 

higher symmetry which keeps the H sector light is ex- 

act down to a scale ~O(Mwa~, 1/2) thus ensuring that 

radiative corrections do not introduce large masses in 

the H sector (a G = g2/4rO. 

In this paper we consider the latter possibility. Since 

the radiative corrections mixing the H and ~b sector and 

giving the hierarchy problem involve scalar, fermion 

and vector loops we need a symmetry relating these 

contributions i.e. supersymmetry. The simplest possi- 

bility is to use a global supersymmetry and to assign 

the H scalars to chiral supermultiplets. Chiral sym- 

metries which forbid fermion masses will also forbid 

the corresponding boson mass term. If  this chiral sym- 

metry remains to a scale O(Mwa~ 1/2) radiative correc- 

tions will not induce scalar masses ~ O ( M w )  [6,7]. 

What is the minimal set of  supersymmetric multi- 

plets needed to solve the hierarchy problem? Each of  

the light fermion helicity states must be associated with 

two real scalar partners whose mass is <~O(Mwa~ 1/2) so 

we need for each light fermion generation two copies 

of  real scalar multiplets transforming as the fermion 

generation i.e. (3,2), (1,2), 2 ! (3,1) and (1,1) under 

SU(3) ! SU(2). The light vector bosons must also be 

in vector supermultiplets with Majorana fermions 

transforming as the adjoint under SU(3) X SU(2) 

! U(1) and with masses ~<O(Mwo~l/2). 

This gives the minimal set of  light (~Mx) particles 

consistent with a global supersymmetry [7]. We denote 

it by I. The scalars transforming as (1,2) can generate 

the spontaneous breaking of  SU(3) X SU(2) X U(1). 

However, if the fermions and leptons are embedded 

in a GUT such as SU(5) it is necessary to stop the light 

(3,1) of  Higgs from coupling to fermions, otherwise 

they will violate B at an unacceptable rate. If  the (1,2) 

is in the same representation as the (3,1) [e.g. the 5 of  
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SU(5)] it will be prevented from coupling to the fer- 

mions too and so will not generate light fermion mass- 

es. In this case we nmst add at least two further chiral 

multiplets with mass %O(Mwo@, 1/2) transforming as 

(1,2); two multiplets being necessary so that the new 

fermions may acquire masses. To avoid problems with 

B violation the GUT partners of these SU(2) doublets 

are supposed superheavy. We denote this set of light 

supersymmetric nmltiplets by 11. Provided these two 

new chiral nmltiplets have different fermion helicities 

there will be no anomalies below M x. Another possibili- 

ty, denoted by III, is that the new chiral multiplets 

transform as (1,2), (1,1) and (1,1) mimicking a lepton- 

ic multiplet. In this case to cancel anomalies it is neces- 

sary to add further chiral multiplets transforming as 

(1,2) (1,1) and (1,1) with fermions of  opposite helici- 

ty to those already included. 

Finally we consider a generalisation which may help 

the inclusion of  these multiplets in a supersymmetric 

GUT. As discussed above it is necessary, in general, to 

prevent the (3,1) of  scalars, the supersymmetric part- 

ners of  the quarks, from coupling to fermions. A natural 

way of  doing this if the GUT is SO(10) is to suppose 

they belong to the 16-dimensional representations 

there being no trilinear 16 coupling. The two new multi- 

plets of scalars transforming as (1,2) may be embedded 

in a single 10 of  SO(10) but this leads to unacceptable 

fermion masses [8]. The minimal set needed are two 

10's. Thus we also consider the possibility of  four light 

multiplets of  scalars transforming as (1,2) which would 

belong to these two 10's , l .  We denote this possibility 

by IV. 

We have assumed spontaneous symmetry breaking 

is possible despite the fact that the scalar potential 

should be supersymmetric and we must break the 

supersymmetry too at a scale ~O(Mw).  For the mo- 

ment we suppose this can be done and ask how the 

predictions for M x and sin 0 w are altered. Below M x 

the effective couplings of  SU(3) X SU(2) X U(1) 

evolve as [3] 

~i l (p)  = C/+ (67r) --1 

1 L 2  
X tr{[-- l l ( tLv)  2 + 4 ( t L )  2 + i ( t i s )  ] 

1 ,,t H )2 4(tt~)2 ln(Mx/ME ) 
! ln(Mx/P)+ ~t~iV + 

1 r*H~2 
+ ~ UiS) ln (Mx/Ms)}  

In M x 

1 f a / ( / / ) d l n p '  +O(~  2) (1) 
8rr2 • 

In# 

L(H) where L(H) stand for light (heavy) particles; t W , 

,L(H) t~0t) are the matrices which represent the HF , 
generators of  G on the light (heavy) vector, fermion 

and scalar fields, respectively (choosing real represen- 

tations). My ,  M F and M s are the masses of  the heavy 

C~/a) vector, fermion and scalar fields, flij is the two- 

loop/3 function. The C i are constants whose relative 

value depend on the GUT. Here we assume the SU(5) 
3 

relation for the Ci, C 3 = C 2 = g C 1 = a~l  (the same 

relations hold for any GUT in which a light family of  

ferinions fits into a complete representation of the 

GUT). We have three couplings determined by two 

parameters, M x and one of the C i. M x is usually deter- 

mined from the measured values of  &EM and a 3. Using 

the one-loop contribution to eq. (1) we find 

M x = p exp {6rr(b2, + s b0 _ ~ b3)_ 1 
(2) 

x [ ~ ( ~ )  - ~,~1(~)1 }, 

where we have chosen M V = M F = M s = p = 80 GeV 

and (6~)- lb i  is the argument of  the log in eq. (1). 

Using the values for aEM(80 ) and a3(80 ) computed 

up to two-loop order in ref. [3] (this takes account of  

the dominant two-loop correcuons) we get the values 

for M x given in table 1. The value used for ~S corre- 

Table 1 

Results for M x and sin 20 w in the various models considered 
in the text. Supersymmetry is assumed to be broken sponta- 
neously at a scale O (Mw). 

Model Mx(GeV ) sin20w 

,1 A conceivable alternative is that the two scalar multiplets 
(1,2) belong to different 10's, their partners being super- 
heavy. This would be a type II representation again. 

I 1.5 X 1018 . . . .  +0.016 U. 1 ~-0.003 

II 3.6 X 1016 ,q ,,~,-;.+o.014 
v-z,/-/-O.O0 3 

III 1.7 X 10 Is . . . .  +o.ols U-£ I/-~0.003 

1+o.011 IV 1.7 X 10 is 0.25 -o.o04 
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• A previous computation by Dimopoulos, Raby and Wilczek had 
found 

MGUT � 1018GeV , sin2θW = 0.20

suggesting no                                       gap (there was  a later 
independent computation by Dimopoulos and Georgi)

MGUT −MPlanck
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quarks which couple more strongly than colour trip- 

lets simply due to the different C.G. coefficients. 

Marciano [11 ] has estimated this effect and found it 

plausible to generate a condensate with vev t>O(100 

GeV). 

In this letter we have considered globally super- 

symmetric versions of  the standard SU(3) ! SU(2) 

! U(1) model. These are the first (perturbative) mod- 

els which allow light scalar states without the hierarchy 

problem. In addition they can avoid the problems of  ex- 

tended technicolour theories giving AS = 1, and AS 

= 2 neutral currents at acceptable levels. 

The value o f M  x depends sensitively on the light 

particle content. For two of  the schemes considered 

M x is the same as that predicted in the minimal SU(5) 

and in them proton decay should be visible. Other 

schemes have M x somewhat larger and consistent with 

the observed lower bound on rp even for A~g = 60 

MeV. Only in the minimal supersy'mmetric scheme I is 

M x much larger than the SU(5) estimate (~Mplanck) 

and this scheme is disfavoured because of  potential 

problems in generating quark masses. 

A necessary consequence of  all these globally super- 

symmetric models is the existence of  supersymmetric 

partners to the observed states with masses ~<O (Mxo~l/2). 

In order to predict their properties precisely it will 

be necessary to understand the details of the breaking 

of  the (globally supersymmetry) SU(3) ! SU(2) ! U(1) 

model to SU(3) X U(1). In addition there remains the 

problem of constructing the supersymmetric GUT. 

One of  us (L.I.) acknowledges the "Juan March" 

Foundation (Spain) for financial support, and the 

other (G.R.) acknowledges the Science Research Coun- 

cil for support. We would like to thank C.H. Llewellyn 

Smith for useful conversations. 
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• In those days data were not sufficiently precise to distinguish 
SUSY from non-SUSY predictions (had to wait for LEP)
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SU(2)L X U(1) SYMMETRY BREAKING AS A RADIATIVE EFFECT 

OF SUPERSYMMETRY BREAKING IN GUTs 

Luis IB,~NEZ 1 and Graham G. ROSS 2 

Department of Theoretical Physics, Oxford OX1 3NP, UK 

Received 7 January 1982 

It is shown how in a globally supersymmetric SU(3) ! SU(2) ! U(1) model supersymmetry breaking can, via radiative 
corrections, induce an effective Higgs potential which spontaneously breaks SU(2) ! U(1) to U(1)Q. We discuss the spec- 
trum of the resulting theory particularly the many new fermions and scalar particles which should be produced by the next 
generation of accelerator. The inclusion of the model in supersymmetric GUTs is considered and a model is constructed in 
which no unnatural adjustment of parameters is required. 

The gauge hierarchy problem [1 ] comes in several 

forms. The most pressing is that, in a theory with a 

large scale M x ~Mplanck , it is natural for all scalars in 

the theory to develop large masses ~ M  x and, conse- 

quently, all spontaneous symmetry breaking in the 

theory will be at a scale ~ x/~ M x where ~ is a typical 

gauge coupling. 

A possible solution is to use a new symmetry to for- 

bid the appearance of  some scalar masses. Such masses 

would arise only at the scale of breakdown of  the new 

symmetry.  The only known symmetry which can do 

this is supersymmetry and several groups have already 

tried to construct models using supersymmetry which 

contain a gauge hierarchy [2,3]. In the simplest of  

these models, it is supposed that the lagrangian is sym- 

metric under the direct product  of  a global N = 1 su- 

persymmetry and the SU(3) ! SU(2) X U(1) gauge 

symmetry.  To avoid the hierarchy problem, supersym- 

metry can be broken only at a scale <~Mw/x/'~. The 

structure may be embedded in a grand unified theory 

at a scale " M  x. 

In a previous let ter  [3],  we considered simple mod- 

els for the supersymmetric version of the standard 

1 Present address: Departamento de Fisica Te6rica, 
Urtiversidad Aut6noma de Madrid, Madrid-34, Spain. 

2 And at Rutherford Laboratory, Chilton, Didcot, Berkshire, 
England. 

SU(3) ! SU(2) ! U(1) model  which could be simply 

included in a grand unified theory, and we computed 

the low-energy predictions for rp,  sin20 w and Mb/M r 

in such models * 1. However, we did not  discuss the 

low-energy breakdown of  supersymmetry and of  

SU(2) ! U(1). In this letter, we consider this problem 

in more detail. We show how SU(2) ! U(1) breaking 

may appear as a radiative effect once supersymmetry 

is broken. We also propose a solution for the "second 

gauge hierarchy problem" which is how to avoid the 

appearance of  light coloured scalars, grand unified 

partners of  the scalars which break SU(2) ! U(1). 

These scalars violate baryon number at an unaccept- 

able rate unless they have a mass ~ M  x. 

N = 1 supersymmetric theories may be built from 

fundamental vector and chiral multiplets. The vector 

(gauge) mult iplet  contains a massless vector field to- 

gether with a Weyl spinor (left-handed or right- 

handed).  The chiral multiplet  contains a Weyl spinor 

of  definite helicity together with a complex scalar 

field. To construct a supersymmetric lagrangian it is 

first necessary to assign all the particles of  the stan- 

dard SU(3) X SU(2) ! U(1) model  to supermultiplets.  

This is shown in table 1. The main uncertainty is in 

,1 In ref. [3] there is an error in the quoted results for Mb/ 
M r. This should be m 1.1 times the usual SU(5) predictions 
for the two models considered. See also ref. [4]. 

0 031-9163/82/0000-0000/$02 .75  © 1982 North-HoUand 215 
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Fig. 1. Graphs contributing to scalar masses. 

effects [2,5]. The latter may occur through a conden- 

sate in a strongly bound sector [2] or through instan- 

ton-type effects inducing operators which break super- 

symmetry. In this letter, we assume that the net result 

of  this breaking is the appearance of  a colour and fla- 

your singlet gluino mass Mss. (Since gluinos couple 

strongly with a large colour charge it seems likely they 

will suffer the dominant (nonperturbative) supersym- 

metry breaking, e.g. through a gluino condensate or 

coupling to a supercolour sector.) We now proceed to 

calculate the radiatively induced supersymmetry break- 

ing effects in the rest of  the spectrum. 

Quarks and leptons do not acquire a mass at this 
1 

level since ,their mass terms transform as I w = 7 where 

I w is the weak isospin. However, their scalar partners 

can have I w = 0 masses and indeed, the scalar, quarks 

acquire masses through the diagrams of  fig. la, b cou- 

pling to the gluinos via their colour charge. In the ab- 

sence of  supersymmetry breaking, the fermionic 

graphs (a) contribute a negative amount which is can- 

celled by the bosonic graph (b). Once the gluinos ac- 

quire a mass, the fermionic contribution is reduced 

leaving a net positive mass term (we cut off  all inte- 

. • -  - . ~ . q  

, X g  " ", 

X~ ". Xg )'7 

Fig. 2. Graph contributing to the photino mass. 

grals at a scale A >Mss  to take account of dynamical 

nature of  symmetry breaking). 

M 2 = (8/37r) aQcDM?s ln(A2/Ms2s ). (4) 
0q 

At this stage, the scalar leptons remain massless as 

they do not couple to the quark or gluon supermulti- 

plets. However, the Higgs scalars acquire a mass 

through their Yukawa couplings to the quark super- 

multiplet as shown in fig. 2. This time, however, the 

bosonic contribution is reduced relative to the fermion- 

ic one as only the scalar partners have a mass [eq. (4)],  

giving a net negative mass for ~' and ~" 

~2,,0,, = -(3/41r2)h2,bM2qln(A/Mchq), (5) 

where it is essentially the Yukawa couplings of  the 

heaviest generation which give most of  the contribu- 

tion. The appearance of  this negative mass term is cru- 

cial as it generates a minimum of the effective Higgs 

scalar potential away from the origin and generates a 

breaking of  SU(2) X U(1) which is directly related to 

the supersymmetry breakdown. The Higgs potential 

including the "gauge terms" is now 

V= _}(g2 +g'2)(0,,*0,,)2 + ~(g2 +g,2)(~*qS,)2 

+ !(g2 _ g'2)(~,*~,)(q~,,*~,,) (6) 

_ } g 2 ( ¢ , ¢ , ) ( ¢ , , ¢ )  2 . . . .  • . . . .  

- / ~ 0 , , t ~  ~ ), 

where g andg '  are the SU(2) and U(1) coupling con- 

stants. One can easily see that the potential (6) is not 
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giving a net negative mass for ~' and ~" 

~2,,0,, = -(3/41r2)h2,bM2qln(A/Mchq), (5) 

where it is essentially the Yukawa couplings of  the 

heaviest generation which give most of  the contribu- 

tion. The appearance of  this negative mass term is cru- 
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the supersymmetry breakdown. The Higgs potential 
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EW symmetry breaking. Minimization of the potential can be shown to give

ν2 ≡ ν2d + ν2u =
2
�
µ
2
d − µ

2
u − (µ

2
d + µ

2
u) cos 2β

�

(g
2
2 + g

2
1) cos 2β

, (2.83)

where νd,u = �H0
d,u� and sin 2β ≡ 2|B�|/(µ2

d+µ
2
u), with tanβ = νu/νd. The non-zero

B
�
-term forces the two vevs to align such that the electromagnetic U(1)EM remains

unbroken. Using the W boson mass to fix ν2 = 2M
2
W /g

2
2 , the Z boson mass can

then be expressed as a polynomial in µ and the SUSY breaking parameters. For

instance in the CMSSM one obtains a quadratic expression

M
2
Z0 = c1M

2
+ c2m

2
+ c3|A|2 + c4|µ|2 + c5MA + . . . , (2.84)

where ci = ci(yt, gi) are calculable coefficients. Thus the soft parameters and top

Yukawa yt are constrained in order to obtain the correct experimental value for

MZ . There are wide regions of parameter space in which this works. However the

LEP and Tevatron bounds have restricted so much the SUSY parameter space that

certain small amount of fine-tuning, at the few percent level, is required. This is

sometimes called the little hierarchy problem.

Figure 2.4 Qualitative view of the renormalization group evolution of the squared masses
of MSSM scalar fields, from a universal valuem2 at a large scale. Squarks q̃ are heavier than
sleptons l̃ due to large positive contributions from gluino loops. Hu is dragged to negative
squared mass due to the large top contribution, and triggers EW symmetry breaking at
low energies.

We conclude this section by recalling some potential tuning problems of the

MSSM with soft term SUSY breaking. There are several associated to flavour
physics. For instance, as already mentioned, soft scalar masses of the first two

generations should be family independent and diagonal to suppress large FCNC.

Also, soft parameters can potentially lead to too large CP violation. Indeed, A,

B
�
, M and µ are in general independent complex parameters, with in principle

no symmetry (or other) relation among their phases, and generically lead to too
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Abstract 

The structure of the quark and lepton masses and mixing angles provides one of the few windows we have on the underlying 

physics generating the Standard Model. In an attempt to identify the underlying symmetry group we look for the simplest gauge 

extension of the SUSY standard model capable of generating the observed structure. We show that the texture structure and 

hierarchical form found in the (symmetric) quark and lepton mass matrices follows if one extends the gauge group of the 

standard model to include an horizontal U(1 ) gauge factor, constrained by the need for anomaly cancellation This U(1) 

symmetry is spontaneously broken slightly below the unification/string scale leaving as its only remnant the observed structure 

of masses and mixings. Anomaly cancellation is possible only in the context of superstring theories via the Green-Schwarz 

mechanism with sin2(0w) = 3. 

1. Introduct ion 

There has been considerable success explaining the 

parameters of  the Standard Model  in the framework of  

a supersymmetric extension of the model with a stage 

of  unification. The measured values of  the gauge cou- 

plings are consistent with their normal unification val- 

ues with a unification scale of  O( 1016 GeV) provided, 

at low energies 4 0 ( 1 0 3  GeV) ,  the Standard Model  

spectrum is extended to that of  the minimal supersym- 

metric model (the M S S M )  [ 1 ]. In addition the pattern 

(and magnitude) of spontaneous breakdown of the 

Standard Model  follows naturally from the structure of  

radiative corrections in the MSSM provided there is 

some unification of  the supersymmetry breaking 

masses at the unification scale [ 1,2]. This simplicity in 

the parameters of  the (supersymmetr ic)  Standard 

* SERC Semor Fellow. 
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Model a high scales appears to extend to some of  the 

couplings involved in determining the fermion masses. 

The measured values of  the bottom quark and the 7 

lepton are consistent with their equality at the unifica- 

tion scale [3,4].  Further the mixing angles and masses 

have values consistent with the appearance of  " tex-  

ture"  zeros m the mass matrix [5 -9 ] ,  such texture 

zeros indicating the appearance of  additional symme- 

tries beyond the Standard Model.  

In this paper we will explore the possibili ty that at 

least some of the symmetries giving rise to this texture 

structure are new gauge symmetries.  Given the success 

of  the MSSM we will look for the minimal extension 

of  the MSSM able to generate a Yukawa structure 

which is phenomenologically viable. W e  consider only 

the case of  symmetric mass matrices t for this allows 

l This restriction is also motivated by our desire to idenUfy the max- 
lmally symmetric possibihty consistent with observation, and sug- 
gests there Is a further left-right symmetry at high scales. 
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It has been recently argued that quantum gravity effects strongly violate all non-gauge symmetries. This would suggest that all 
low energy discrete symmetries should be gauge symmetries, either continuous or discrete. Acceptable continuous gauge symme- 
tries are constrained by the condition they should be anomaly free. We show here that any discrete gauge symmetry should also 
obey certain "discrete anomaly cancellation" conditions. These conditions strongly constrain the massless fermion content of the 
theory and follow from the "parent" cancellation of the usual continuous gauge anomalies. They have interesting applications in 
model building. As an example we consider the constraints on the ZN "generalized matter parities" of the supersymmetric stan- 
dard model. We show that only a few (including the standard R-parity) are "discrete anomaly free" unless the fermion content 
of the minimal supersymmetric standard model is enlarged. 

It has been recently argued that  quan tum gravity 

(wormhole)  [ 1 ] effects strongly violate all non-gauge 

symmetr ies .  I f  this is the case, the only relics o f  an 

underlying "theory of  everything" in the effective low 

energy theory will be those constraints following from 

gauge symmetr ies .  This seems to endanger  all hopes 

of  predict ing the parameters  o f  the s tandard  model,  

the masses and mixing angles, for the gauge group of  

the s tandard  model  does not  impose  any constraints  

on these parameters .  It is possible that  there are en- 

larged gauge symmetr ies ,  broken at a scale M x  above 

the electroweak breaking scale, which predict  these 

couplings but  any such relat ion is still expected to be 

broken by quan tum gravity effects at O ( M x ) / M e t .  

This limits the allowed scale of  the new physics i f  they 

are to de te rmine  the low energy theory and seems to 

rule out "grand unif ied" explanations associated with 

new physics close to the Planck scale. 

The only exception to this rule follows i f  there is an 

unbroken "discrete  gauge" factor [2,3 ]. In this case, 

as poin ted  out  by Wilczek and Krauss  [ 2 ], relat ions 

following from such symmetr ies  remain  unbroken by 

quan tum gravity corrections.  These discrete symme- 

tries may be defined from scratch, as in latt ice gauge 

theories, but in cont inuum theories they appear  when 

a gauge symmetry  G is broken to a discrete subgroup 

H. The simplest  example is an abel ian Higgs model  

with a U ( 1 ) gauge symmetry  broken by a VEV of  a 

scalar field ~ with charge Nq. I f  the rest of  the part i-  

cles in the spectrum have charge quant ized in units 

of  q, there is a residual ZNe U ( 1 ) symmetry  unbro- 

ken. This is a "gauge ZN symmetry" .  Notice  that  one 

assumes here that  the U ( 1 ) charges of  the particles 

are quantized,  as normal ly  happens  in unif ied and 

string theories. It is also required in order  to obta in  

vanishing U ( 1 ) -g rav i t a t ion  mixed anomalies  [ 4 ]. 

Discrete symmetr ies  often play an impor tan t  role 

in model  building. These are usually imposed on the 

lagrangian in order  to achieve different phenomeno-  

logical virtues such as the suppression of  f lavour 

changing neutral  currents, the restr ict ion to realistic 

quark and lepton mass matr ices  and the e l iminat ion  

o f  baryon- or lep ton-number  violat ing terms. A typi- 

cal example of  the lat ter  is the R-par i ty  of  the mini-  

0370-2693/91/$ 03.50 © 1991 - Elsevier Science Publishers B.V. ( North-Holland ) 291 
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terms of q, there will be a residual unbroken discrete
7~N group. This is a discrete

gauge symmetry. The “discrete gauge anomalies” discussed in ref. [10] are non-

perturbative like Witten’s SU(2) anomaly. Thus, e.g. if there is a mixed /LN>< SU(3)

X SU(3) anomaly you expect that QCD instanton effects will generate terms

violating the discrete 77N symmetry explicitly.

As pointed out by Krauss and Wilzek [8,9], “discrete gauge symmetries” have

the interesting property that they are stable under quantum gravity (wormhole)

effects. This is unlike usual non-gauge discrete symmetries which are explicitly

broken by these quantum gravity fluctuations. This is important since, e.g. if the

observed stability of the proton in a given model depends on the existence of a

non-gauge discrete symmetry (like the ones studied in previous sections), one

generically expects that quantum gravity effects will violate it and will induce fast

proton decay [7]. It then would be desirable to use discrete gauge symmetries in

order to guarantee that the structure of allowed and forbidden couplings is

respected by the ever present quantum gravity fluctuations.

An additional appeal of discrete gauge symmetries is that discrete symmetries in

four-dimensional string models have typically a gauge origin. That is for example

the case of the abundant 77N symmetries in orbifold models which are subgroups of

U(1)s which are spontaneously broken to 77N~ when one moves away from the

“multicritical” (enhanced symmetry) points [23]. This phenomenon does also occur

in other type of four-dimensional strings like those based in the tensoring of N = 2

superconformal field theories (and their associated Calabi—Yau compactifications).

Thus it seems reasonable to expect the existence of residual unbroken gauge 77N

symmetries in the low energy effective actions of four-dimensional strings.

The interesting point is that if we insist on all the relevant discrete symmetries

(like the generalized parities) being of gauge origin, it can be shown that the light

fermions must obey some restrictive “discrete anomaly cancelation conditions”

[101. Let us assume there is an effective gauge 77N symmetry under which the

massless fermions of the theory transform with charges q
3. There are several types

of “discrete anomalies” which must be cancelled by appropriately choosing the

chiral fermion content of the theory. These are the following:

(i) Cubic 7/~anomaly cancelation condition

~ (q~)
3= rN + ~sN3, r, s E 7/, (32)

where x~= 1, 0 for N = even, odd.

(ii) Mixed 7/s—gravitational anomalies

~(q,) =r’N+~qs’N, r’, s’E7/. (33)
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(iii) Mixed
7/N—SU (M)—SU(M) anomalies:

~ 1~(q
1)= -~-r”N, r” a 7/. (34)

Here T1 is the quadratic SU(M) Casimir corresponding to each given representa-

tion (the normalization is such that the Casimir of an M-plet is = 1/2). The sums

are over the light sector of the theory (those fields which do not get a mass when

the symmetry breaking U(1) ~
7/N takes place).

In the case there are extra unbroken abelian factors, U(1)
11s, in the theory one

can write down further constraints associated with mixed U(1)~7/N and U(1)~7/~

anomalies. However [10] they turn out not to be very useful without the precise

knowledge of the underlying theory before the symmetry breaking U(1) —s
77N took

place. If, on the other hand, there are two discrete symmetries 77N and 7/M

present, there are extra conditions from the cancellation of mixed ~ anoma-

lies. These yield

~ t,u,s”a7/ (35)

where ‘qq (‘I7~)= 1, 0 for M(N) even, odd. Here q
1 and p1 correspond to the

7/N

and 7/M charges respectively.

All the above conditions look like a discretized version (i.e. mod N) of the usual

continuous anomaly cancellation conditions. There is however an important differ-

ence provided by the last term in equations (32), (33) and (35). This term is

associated with the possibility that at the symmetry breaking stage U(1) ~

some fermions get a large Majorana mass and give the contribution of these

massive fermions to the anomaly. Thus these extra terms may in some sense be

interpreted as “discrete Wess—Zumino “-like terms.

An interesting question is which (if any) of the discrete symmetries described in

the previous sections fulfill the criterion of being “discrete anomaly free” and

hence stable under quantum gravity effects. Already from the outset one can rule

out a complete class of discrete symmetries. The R-symmetries studied in sect. 4

cannot have a gauge origin because any gauged continuous version of a discrete

R-symmetry necesarily violates (N = 1) supersymmetry. Particles belonging to the

same multiplet would couple differently to the gauge bosons and hence gauge

invariance would not commute with supersymmetry. Although this is possible in

extended supersymmetries it is not possible in the N = 1 case we are considering

here. (The situation concerning a gauge origin for the discrete R-symmetries may

change in the case of effective theories from strings, as we discuss in sect. 6).

It is very easy to find the constraints on a generic discrete symmetry g =

R~A~Lf~for any N coming from the above constraints. Let us consider the

conditions coming from cancelation of mixed gravitational, mixed ZN—SU(3)—SU(3)

Discrete gauge symmetries must be anomaly free

V ery restrictive conditions!!
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In the supersymmetric standard model operators of dimension 4 and 5 generically violate B

and L number. One usually assumes the presence of some discrete symmetry (“matter parities”)

in order to forbid dangerous operators which may lead otherwise to unacceptable violations of B

and L. We give a general classification of such discrete L,~symmetries (and R-symmetries) and

show that the number of independent possibilities is substantially reduced by equivalences. We

argue that normal discrete symmetries may be expected to be violated by quantum gravity effects

and hence are not enough to inhibit nucleon decay. On the other hand, gauge (either discrete or
continuous) symmetries are stable under quantum gravity effects and we discuss how such

symmetries may eliminate the dangerous B- or L-violating operators. We find that the massless

fermion content of models with discrete “gauge” symmetries is strongly constrained by the

cancellation of “discrete gauge anomalies”. We show that there are two preferred
1N symme-

tries which are discrete anomaly free with the minimal light matter content. One of them is the

standard R-parity whereas the other is a unique Z~symmetry allowing for lepton number

violation. We argue that from the point of view of arranging for proton stability without

fine-tuning the second option should be preferred. The differences in the phenomenology of the

various sypersymmetric models dictated by the different symmetries are discussed.

1. Introduction

The construction of a supersymmetric version of the standard model [1] immedi-

ately runs into difficulty for, unlike the standard model, there are terms of

dimension 4 allowed by the SU(3) x SU(2) x U(1) gauge symmetry which violate

baryon- and lepton-number [2,3]. If present these terms will normally lead to

unacceptably fast rates of nucleon decay for they appear unsuppressed by any

0550-3213/92/$05.OO © 1992 — Elsevier Science Publishers B.V. All rights reserved



DGS in the MSSM  
• Family independent discrete symmetries may be classified in terms 
of 3 generators:

Consider a T6
, taken factorizable for simplicity, with each (T2

)
i
parametrized by

x
i
, y

i
, i = 1, 2, 3, and denote [ai], [bi] the 1-cycles along its two independent 1-cycles

(with [ai] · [bj] = δij). The orientifold acts as x
i → x

i
, y

i → −y
i
, and we take the action

on the 1-cycles to be [ai] → [ai], [bi] → −[bi] (although other tilted orientifold actions

are possible, see appendix A). The basis of even and odd 3-cycles are

[α0] = [a1][a2][a3] , [β0] = [b1][b2][b3]

[α1] = [a1][b2][b3] , [β1] = [b1][a2][a3]

[α2] = [b1][a2][b3] , [β2] = [a1][b2][a3]

[α3] = [b1][b2][a3] , [β3] = [a1][a2][b3] (2.17)

The coefficients s
k
A are thus

s
0
A = m

1
Am

2
Am

3
A , s

1
A = m

1
An

2
An

3
A , s

2
A = n

1
Am

2
An

3
A , s

3
A = n

1
An

2
Am

3
A , (2.18)

where (n
i
,m

i
) denote the wrapping numbers on the i-th torus with coordinates (x

i
, y

i
).

3 Discrete gauge symmetries and SM brane con-

structions

We now turn to the study of discrete gauge symmetries in brane constructions of phe-

nomenological interest. We first review the classification of discrete gauge symmetries

of the MSSM in [10], and later study its implementation in various proposed D-brane

realizations of MSSM-like models.

3.1 Discrete gauge symmetries in the MSSM

In [10] the possible ZN generation independent discrete symmetries of the MSSM were

classified in terms of the three generatorsR,L,A given in table 1. Here (Q,U,D, L,E,N,

Hu, Hd) are the MSSM quark, lepton and Higgs superfields in standard notation. Defin-

ing

RN = e
i 2πR/N

, LN = e
i 2πL/N

, AN = e
i 2πA/N

, (3.1)

a ZN gauge symmetry generator may be written as

gN = R
m
N × A

n
N × L

p
N , m, n, p = 0, 1, .., N − 1 . (3.2)

This is the most general ZN symmetry allowing for the presence of all standard Yukawas

QUHu, QDHd, LEHd (and also LHuNR in the presence of right-handed neutrinos).

10

Q U D L E NR Hu Hd

R 0 -1 1 0 1 -1 1 -1

L 0 0 0 -1 1 1 0 0

A 0 0 -1 -1 0 1 0 1

Table 1: Generation independent generators of discrete ZN gauge symmetries in the MSSM.

Note that one can obtain further but equivalent discrete symmetries by multiplying by

some power of a discrete subgroup of the hypercharge generator e
i 2π(6Y )/N

, where we

use 6Y to make hypercharges integer. As discussed in [9, 10], the mixed ZN ×SU(3)
2
,

ZN × SU(2)
2
and mixed gravitational anomaly constraints yield

nNg = 0 , mod N (3.3)

(n+ p)Ng − nND = 0 , mod N (3.4)

−Ng(5n+ p−m) + 2nND = η
N

2
, mod N (3.5)

where Ng, ND are the number of generations and Higgs sets respectively and η = 0, 1

for N =odd, even
2
.

As discussed in the introduction, only discrete gauge symmetries are expected to

exist in consistent theories including gravity. Therefore, it is a relevant question to

assess the conditions for the above symmetries to be discrete gauge symmetries. A

necessary condition is anomaly cancellation. The R2 symmetry corresponds to the

usual R-parity and it is anomaly free (in fact all RN are anomaly free for any N in

the presence of right-handed neutrinos). In addition, for the Ng = 3 physical case,

there are three anomaly free Z3’s: L3, R3L3 and R3L
2
3, as the reader may easily check

using (3.5). The symmetry B3 = R3L3 was introduced in [10] and is usually called

baryon triality; it allows for dimension 4 operators violating lepton number, but not

violating baryon number, so the proton is sufficiently stable. There are also additional

Z9 and Z18 anomaly free discrete symmetries [15] which involve the AN generators.

However, imposing also the purely Abelian cubic condition of [9] and absence of massive

fractionally charged states singles out R-parity R2 and baryon triality B3.

The phenomenologically interesting couplings allowed or forbidden by these discrete

symmetries are displayed in table 2. The Z6 obtained by multiplying R2 and B3 is

usually called hexality [15] and forbids all dangerous couplings but allows for a µ-term

2In the presence of Ng right-handed neutrinos, which is the generic case in brane models, the mixed

gravitational anomaly gets simplified to −4nNg + 2nND = (η/2)N mod N .

11

Consider a T6
, taken factorizable for simplicity, with each (T2

)
i
parametrized by

x
i
, y

i
, i = 1, 2, 3, and denote [ai], [bi] the 1-cycles along its two independent 1-cycles

(with [ai] · [bj] = δij). The orientifold acts as x
i → x

i
, y

i → −y
i
, and we take the action

on the 1-cycles to be [ai] → [ai], [bi] → −[bi] (although other tilted orientifold actions

are possible, see appendix A). The basis of even and odd 3-cycles are

[α0] = [a1][a2][a3] , [β0] = [b1][b2][b3]

[α1] = [a1][b2][b3] , [β1] = [b1][a2][a3]

[α2] = [b1][a2][b3] , [β2] = [a1][b2][a3]

[α3] = [b1][b2][a3] , [β3] = [a1][a2][b3] (2.17)

The coefficients s
k
A are thus

s
0
A = m

1
Am

2
Am

3
A , s

1
A = m

1
An

2
An

3
A , s

2
A = n

1
Am

2
An

3
A , s

3
A = n

1
An

2
Am

3
A , (2.18)

where (n
i
,m

i
) denote the wrapping numbers on the i-th torus with coordinates (x

i
, y

i
).

3 Discrete gauge symmetries and SM brane con-

structions

We now turn to the study of discrete gauge symmetries in brane constructions of phe-

nomenological interest. We first review the classification of discrete gauge symmetries

of the MSSM in [10], and later study its implementation in various proposed D-brane

realizations of MSSM-like models.

3.1 Discrete gauge symmetries in the MSSM

In [10] the possible ZN generation independent discrete symmetries of the MSSM were

classified in terms of the three generatorsR,L,A given in table 1. Here (Q,U,D, L,E,N,

Hu, Hd) are the MSSM quark, lepton and Higgs superfields in standard notation. Defin-

ing

RN = e
i 2πR/N

, LN = e
i 2πL/N

, AN = e
i 2πA/N

, (3.1)

a ZN gauge symmetry generator may be written as

gN = R
m
N × A

n
N × L

p
N , m, n, p = 0, 1, .., N − 1 . (3.2)

This is the most general ZN symmetry allowing for the presence of all standard Yukawas

QUHu, QDHd, LEHd (and also LHuNR in the presence of right-handed neutrinos).
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HuHd UDD QDL LLE LHu LLHuHu QQQL UUDE

R2 x x x x

B3 = R3L3 x x x

L3 x x x x x x

R3L
2
3 x x x x x x

R2 ×R3L3 x x x x x x

Table 2: Operators forbidden by the anomaly-free Z2 and Z3 symmetries.

and the Weinberg operator LLHuHu (and hence left-handed and right-handed neutrino

Majorana masses). This ends our review of anomaly free discrete ZN gauge symmetries

in the MSSM.

3.2 Discrete gauge symmetries in SM-like brane models

We turn now to the appearance of discrete gauge symmetries in explicit SM-like brane

models. As in section 2, in our examples we will concentrate in toroidal type IIA orien-

tifolds (or orbifolds thereof) with intersecting D6-branes, although from the context it

transpires that much of the analysis holds in more general orientifolds; for instance, in

the large class of Gepner MSSM-like orientifold models constructed in [40, 41, 42]. Sim-

ilar results also hold in other MSSM-like constructions as well, like type IIB orientifolds

with magnetized D-branes, related to IIA models by mirror symmetry (T-duality in the

toroidal setup), or in heterotic compactifications with U(1) bundles [45, 46]. Similar

analysis can in principle be carried out in other setups, like D3/D7-branes at singulari-

ties, although the presence of extra multiplets beyond the MSSM ones in these models

makes the analysis more model-dependent.

Much of the analysis of U(1) symmetries of (MS)SM-like orientifolds can be char-

acterized in terms of ‘protomodels’, i.e. the gauge groups on the relevant sets of D6-

branes, and the intersection numbers pattern required to reproduce the chiral matter

content. These structures can subsequently be implemented in different compactifi-

cations, based on geometric spaces (toroidal or not), or non-geometric CFT setups.

Results based on the protomodel structure are largely independent on their specific

realization. We first consider the implementation of MSSM discrete gauge symmetries

in the different MSSM-like brane protomodels, and later turn to their realization in

concrete examples, for simplicity based on toroidal orientifolds. Some of these real-

izations are actually non-supersymmetric, but provide a good testing ground of the

12

R− parity
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Anomaly free DGS in the MSSM:  

Hexality

• Only a few anomaly free options!!

Lepton− triality

• Quite different signatures at LHC!!



• Discrete symmetries do their job to get a stable proton but
they have no apparent motivation at a more fundamental level

• It has been recently realized that:
   - Discrete gauge symmetries are generic in string models
   - In MSSM-like brane models the discrete gauge symmetries     
appearing are those clasified 20 years ago
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Just the SM at intersecting branes

Minimal Structure of SM D-brane settings

Configuration of 4 stacks of branes:

stack a Na = 3 SU(3) × U(1)a Baryonic brane

stack b Nb = 2 SU(2) × U(1)b Left brane

stack c Nc = 1 U(1)c Right brane

stack d Nd = 1 U(1)d Leptonic brane
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BF couplings and discrete symmetries

! Stückelberg couplings of the form                   lead to       symmetries

Gauge transformation: 

!            is a field of U(1) charge n : 

       so           breaks

n(B ∧ F ) Zn

dB = ∗da

F = dAU(1) gauge th.                      with 2-form                                     axion

(da− nA) ∧ ∗(da− nA)

A → A+ dλ ; a → a+ nλ

L4d ∼ n(B ∧ F )

eia → einλ eia

eia

�eia�
U(1) → Zn

Banks, Seiberg

B ←→ a ∼ a+ 2π
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• In theories with             fields with                                couplings 
there are residual           symmetries        
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BF couplings and discrete symmetries

! Stückelberg couplings of the form                   lead to       symmetries

Gauge transformation: 

!            is a field of U(1) charge n : 

       so           breaks

n(B ∧ F ) Zn

dB = ∗da
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Banks, Seiberg

B ←→ a ∼ a+ 2π

• Gauge invariant:        

• Pseudoscalar is charged        



• Interestingly:        

• The anomaly free DGS of the MSSM appear naturally in large 
classes of brane models !!!        

Discrete symmetries in MSSM-like models

! We have looked for the realization of these discrete symmetries in 

concrete MSSM-like toroidal orientifolds with intersecting D6-branes.

! Example:                                                        gauge theory

T6/Ω : (m1, n1) (m2, n2) (m3, n3)
Ω−→ (m1,−n1) (m2,−n2) (m2,−n3)

Ibáñez, Uranga

BF couplings:Ni (n1,m1) (n2,m2) (n3,m3)

Na = 3 (1, 0) (l, 1) (3,m)

Nb = 1 (0, 1) (1, 0) (0,−1)

Nc = 1 (n, 1) (1, 0) (0, 1)

Nd = 1 (1, 0) (p,−3) (1,m)

l ,m , n , p ∈ Z

F a ∧ 3(3B2 + lmB3)

F c ∧ nB3

F d ∧ (−3B2 + pmB3)

Discrete symmetries are quite generic:

"                          e.g.  R-parity (n=2)

" 

"                                    
                Baryon triality

Rn ⊂ U(1)c

L3 ⊂ U(1)d ⇐⇒ pm ∈ 3Z

R3L3 ∼ B3 ⊂ U(1)a ⇐⇒ lm ∈ 3Z

U(3)a × Sp(2)b × U(1)c × U(1)d
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Discrete symmetries are quite generic:

"                          e.g.  R-parity (n=2)

" 

"                                    
                Baryon triality

Rn ⊂ U(1)c

L3 ⊂ U(1)d ⇐⇒ pm ∈ 3Z

R3L3 ∼ B3 ⊂ U(1)a ⇐⇒ lm ∈ 3Z
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• This gives a fundamental explanation for proton stability in the 
MSSM (due to the presence of DGS).        
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